Package: assignPOP 1.3.0

assignPOP: Population Assignment using Genetic, Non-Genetic or Integrated Data in a Machine Learning Framework

Use Monte-Carlo and K-fold cross-validation coupled with machine- learning classification algorithms to perform population assignment, with functionalities of evaluating discriminatory power of independent training samples, identifying informative loci, reducing data dimensionality for genomic data, integrating genetic and non-genetic data, and visualizing results.

Authors:Kuan-Yu Chen [aut, cre], Elizabeth A. Marschall [aut], Michael G. Sovic [aut], Anthony C. Fries [aut], H. Lisle Gibbs [aut], Stuart A. Ludsin [aut]

assignPOP_1.3.0.tar.gz
assignPOP_1.3.0.zip(r-4.5)assignPOP_1.3.0.zip(r-4.4)assignPOP_1.3.0.zip(r-4.3)
assignPOP_1.3.0.tgz(r-4.5-any)assignPOP_1.3.0.tgz(r-4.4-any)assignPOP_1.3.0.tgz(r-4.3-any)
assignPOP_1.3.0.tar.gz(r-4.5-noble)assignPOP_1.3.0.tar.gz(r-4.4-noble)
assignPOP_1.3.0.tgz(r-4.4-emscripten)assignPOP_1.3.0.tgz(r-4.3-emscripten)
assignPOP.pdf |assignPOP.html
assignPOP/json (API)

# Install 'assignPOP' in R:
install.packages('assignPOP', repos = c('https://alexkychen.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/alexkychen/assignpop/issues

On CRAN:

Conda:

cross-validationdata-integrationgbsmachine-learningpopulation-assignmentpopulation-genomicsradseq

5.33 score 17 stars 25 scripts 610 downloads 11 mentions 13 exports 79 dependencies

Last updated 1 years agofrom:4f32e19db9. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 09 2025
R-4.5-winOKMar 09 2025
R-4.5-macOKMar 09 2025
R-4.5-linuxOKMar 09 2025
R-4.4-winOKMar 09 2025
R-4.4-macOKMar 09 2025
R-4.4-linuxOKMar 09 2025
R-4.3-winOKMar 09 2025
R-4.3-macOKMar 09 2025

Exports:accuracy.kfoldaccuracy.MCaccuracy.plotassign.kfoldassign.matrixassign.MCassign.Xcheck.locicompile.datamembership.plotread.Genepopread.Structurereduce.allele

Dependencies:caretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdoParalleldplyre1071fansifarverforeachfuturefuture.applygenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6randomForestRColorBrewerRcpprecipesreshape2rlangrpartscalesshapesparsevctrsSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetreetzdbutf8vctrsviridisLitewithr